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LIQUID CRYSTALS, 1989, VOL. 4, No. 2, 133-155 

The influence of director fluctuations on molecular reorientation of a 
small probe molecule in a liquid-crystalline environment 

by G. VAN DER ZWAN and L. PLOMPt 
Department of Physical and Theoretical Chemistry, Vrije Universiteit, 

de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands 

(Received 25 February 1988; accepted 3 September 1988) 

The influence of director fluctuations on a probe molecule dissolved in a 
nematic liquid crystal is calculated to all orders using the gaussian properties of the 
director field. Consequences for the N.M.R. spectrum and relaxation through 
quadrupolar interaction of the probe molecule are indicated. It is found that the 
equilibrium distribution of molecular orientations, and consequently quadrupolar 
spectral splittings are virtually unchanged by fluctuations in the director field. The 
spectral densities are also obtained and it is shown that in addition to J,,, also Jo0 
and Joz become frequency dependent in the N.M.R. frequency range. The fre- 
quency dependence of J,,,, and Jo2 has a logarithmic contribution; the magnitude of 
the frequency dependent contribution to Joz is, however, insufficient to explain 
experimental results. 

1. Introduction 
In the theory of intramolecular N.M.R. spin-lattice relaxation, orientational order 

and orientational correlation functions play an important r61e. This is especially so 
when the nucleus under consideration is part of a probe molecule dissolved in a liquid 
crystal environment. Not only is the ordering high, leading to considerable quadru- 
polar line splittings in the N.M.R. spectra, but in addition there are slowly relaxing 
modes present, connected to the director field, which are thought to give rise to the 
frequency dependent behaviour of the spin-lattice relaxation time [I]. The relaxation 
behaviour is conveniently described by the Redfield theory [2], which calls for knowl- 
edge of the order parameters and orientational correlation functions of the probe 
molecule. These quantities are influenced to a considerable extent by the presence of 
a director field. In fact the orientational order is almost totally due to the coupling 
of the probe molecule to the director field. 

For small probe molecules, molecular reorientation can be thought of as resulting 
from two processes. On a short timescale the reorientation is assumed to take place 
through orientational diffusion or through collision processes in the presence of a 
fixed orienting potential [3]. The orienting potential is an interaction potential of 
mean torque between the probe molecule and the director field. The director field itself 
changes on a much longer time scale [4-61. This model implies that we may first 
calculate order parameters and correlation functions in the presence of a fixed director 
field and subsequently investigate the influence of fluctuations. This was done in [7] 
to lowest order in the fluctuations, and to lowest order in the coupling parameter. 

t Present address: Netherlands Energy Research Foundation ECN, Department of 
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134 G. van der Zwan and L. Plomp 

However, experimental results show that the lowest order theory does not suffice 
[8, 91. Direct extension of the methods used in [7] to higher orders leads to serious 
difficulties, both of computational and of a more fundamental nature. The gaussian 
properties of director fluctuations [ 101, together with the nature of the orienting 
potential suggests the possibility of including the fluctuations to all orders. 

From this description of the process of molecular reorientation it will be clear that 
the separation of time scales of molecular reorientation and of the motion of the 
director field breaks down for large probe molecules. Here large means high ordering, 
or equivalently, a strong interaction between probe and liquid crystal. In the limiting 
case of a probe molecule of the same size, or indeed of the same nature, as the liquid 
crystal molecules the probe participates in the motion of the director field and we may 
arrive at the opposite description where collisional processes slightly disturb the 
movement of the probe, which is now almost totally due to the collective motions of 
the director field. This is not the subject of the present paper [ I l l .  The processes 
described here can be characterized by two parameters. The first, denoted in this paper 
by A, is the coupling strength between the probe molecule and liquid crystal. The 
second parameter, a, describes the magnitude of director fluctuations and is conse- 
quently related to the elastic constants of the medium and, more importantly, to 
a cut-off wavelength, Ac,  that has to be introduced to impose a boundary on the 
application of the macroscopic theory at a molecular level. It is assumed here 
that there is a regime of parameter values where the lowest order theory alluded 
to in the first paragraph breaks down, but the separation in time scales can still 
be made. 

In this paper we intend to investigate the influence of director fluctuations to all 
orders. In 52 we describe the necessary ingredients of the theory, based on the Redfield 
expressions. In $3 we establish the interaction between a probe molecule and its liquid 
crystal environment. In $4 we consider the renormalization of the order parameters 
due to director fluctuations. The time dependent behaviour of the director field is the 
subject of $5, and its consequences for the correlations functions is studied in $6. The 
final section is devoted to remarks and conclusions. 

2. Relaxation by quadrupolar interaction 
Although the theory of reorientation motion in a liquid crystal is interesting in its 

own right, we wish to connect it to the spin relaxation of a nucleus through quadru- 
polar interaction with its surroundings. The nucleus is part of a probe molecule 
dissolved in a liquid crystal. The reason for the investigation of this particular 
problem is a discrepancy between existing theories and experimental data [8,9] in this 
field. Also it gives us the possibility to restrict the calculation to a number of 
correlation functions which are physically interesting, at least in the field of N.M.R. 
spectroscopy. The basic ingredients of the theory are the following. 

The system consists of a nucleus in a probe molecule, immersed in the nematic 
phase of a liquid crystal and placed in an external magnetic field. The magnetic 
field has two important effects: the first is to align the liquid crystal and the second 
is the splitting of the Zeeman energies of the nucleus, Other effects can be shown 
to be negligible; for instance the probe molecule, if it possesses an anisotropy 
of its diamagnetic susceptibility tensor, aligns in the magnetic field but to a much 
smaller extent than the alignment caused by the interaction with the liquid crystal. 
The magnetic field also changes the spectrum of director fluctuations slightly. It 
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Molecular reorientation in a nematic 135 

finally provides us with a reference system, the laboratory frame, to which we refer 
all our other coordinate frames. The Zeeman hamiltonian of the nucleus is given by 

where Z, denotes the z component of the nuclear spin operator, y is the gyromagnetic 
ratio of the nucleus and B, is the magnetic flux density in the z direction. The second 
part of the nuclear hamiltonian is the quadrupolar interaction term 2, ; it is given by 

2, = -hw,Z,, w, = yBz, (2.1) 

[I21 
2 1  = hw, c (- l)m(TI)-m 1 D;.,(Q)F,.. (2.2) 

m m' 

In this equation a,, denotes the quadrupole coupling constant, e2 qQ V,, , multiplied 
by n/Z(2I - 1),/(3/2), (11), are the spherical components of the spin product at 
operators IT, D$, (R) denotes the Wigner rotation matrices (we use the conventions 
of Rose [ 131 throughout) and R = (- 7, - 8, - a), and (&) is the set of Euler angles 
which transform the laboratory frame to the molecular frame. The molecular frame 
is some suitably chosen coordinate system in which for instance the electric polariz- 
ability tensor is diagonal. The sums over m and m' range from - 2 to 2. The F, are 
a set of constants completely determined by the molecular geometry; they are given by 

The set of Euler angles Y transform the local frame in which the electric field gradient 
tensor is diagonal, to the molecular frame; 6 denotes the asymmetry of the electric 
field gradient tensor. 

The set of angles R changes with the orientation of the molecule and is therefore 
a time dependent function. Redfield theory requires two quantites: (D~,,(R)), 
the ensemble averaged value of the rotation matrices, necessary to calculate tran- 
sition frequencies. The second set of quantities are the correlation functions 
(Din,. (R,)D:,. (a)) which determine the relaxation behaviour of the quadrupolar 
nucleus. These averages are defined, respectively, as 

<QL (Q) ) = J dapeq (R)D;m, (a) (2.4) 

and 

(QL,(~P:~ , (Q))  = J d~ J da,Peq (Q,)P(Q,I R, ~>QL~,(Q,)G,*(Q), (2.5) 

where Peq(R) is the equilibrium distribution of angles Q and P(R,I R, t )  the conditional 
probability of finding a set of angles R at time t ,  given that at time zero the angles were a. If there were no director field present, Peq(R) would be a constant and the 
conditional probability could in principle be determined from for instance a collision 
model or a rotational diffusion model [14]. The presence of a director field changes 
this in two essential ways. First it provides the molecule with an external field in which 
it will try to find the orientation of lowest free energy, but secondly this potential of 
mean torque is itself a fluctuating quantity, governed by its own laws, albeit at a much 
slower time scale. The inclusion of this potential of mean torque into the Fokker- 
Planck equation and the consequences of the time scale separation has been studied 
extensively by Freed [7]. The results of his calculations are essentially that Peq(Q) can 
be written, in this limit, as 

(2.6) cq (a) = J d$hq ($)peq., (a), 
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136 G. van der Zwan and L. Plomp 

where $ = ( 4 0 ~ )  denotes the set of angles transforming the laboratory frame to the 
local director field frame of reference,f,, ($) the equilibrium distribution of this set of 
angles, which is directly related to the equilibrium distribution of director fluctu- 
ations. Finally Pe,,$(SZ) is the equilibrium distribution of angles SZ for a given value of 
$ (see, however, Appendix A). 

For the transition probability P(R,IQ, t )  the following relation was shown to hold 

Peq(fio)p(Qnlfi, o = J d+o J d+~q(+O)Peq,Jo(SZo)f(tl iOl~, t)P$(Qn/n, t>. (2.7) 

In this equationf($,I$, t )  is the conditional probability of finding a set of angles $ 
at time t ,  given that they have values $o at time zero, and P$(R,IR, t )  the transition 
probability for the SZs for a given set of values $. The first of these two functions is 
determined by considering the dynamics of the director field. The second is a conse- 
quence of the rotational dynamics of the probe molecule in the external potential 
provided by the director field. Explicit expressions for these quantities are derived in 
the subsequent sections. Equations (2.7) shows that the fast rotational motion of the 
molecule and the motion of the director field have effectively been separated. 

~71: 

3. The probe molecule-liquid crystal interaction 
The orienting potential of mean torque acting on a molecule at the origin of the 

coordinate system in a liquid crystal due to the presence of a director field is, to lowest 
order, given by an expression of the form [3] 

% = -Q:N(r = 0), (3.1) 
where Q is some molecular tensor property, for instance the direct product of the 
molecular dipole moment with itself, or the molecular electric quadrupole moment, 
and where the tensor N(r) describes the director field. Traditionally the director field 
is described by a vector quantity, usually denoted by n(r), and consequently it might 
be thought that an interaction term of the type q .  n(r = 0), where q is for instance 
the molecular dipole moment, would be of a lower order than the one described by 
equation (3.1). However, the director field in a nematic is invariant under inversion 
(n(r) + - n(r)), which would lead to sign change for the latter interaction. We will not 
specify the character of the tensor Q, or the nature of the interaction between probe 
molecule and director field, but in practice it determines the molecular frame of 
reference as the coordinate frame in which it is diagonal. The tensor field N(r) can be 
thought of as the direct product n(r)n(r) [15] and its properties can be derived from 
the properties of the field n(r) [4-6, 151. 

Now that we have established the form of the interaction, we can proceed to 
express it  in properties of the director field and of the molecule by means of rotations 
to the molecular and the local director frame. We can write 62 in the following form 

*a = - (1/3) Tr (Q) Tr (N) - Q(') : N")(r = 0), (3.2) 
where the superscript 0 denotes the traceless parts of the respective tensors. The first 
part of % is invariant under rotations and we will, henceforth, neglect it since it only 
represents a shift in zero point energy. The second part can be written as a sum over 
the spherical components of both the tensors [13] 

@ = - 1 (- l ) "QmNm.  
m 

(3.3) 
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Molecular reorientation in a nematic 137 

Transforming the Qs to the molecular reference frame, and the Ns to the local director 
frame gives 

In this equation QLM) denote the spherical components of Q in the molecular frame 
and Nf' the spherical components of N(r = 0) in the local director frame. In general 
a symmetric traceless tensor has five independent components, three are the Euler 
angles which refer it to a specific coordinate system, two components remain in the 
coordinate system in which it is diagonal. Traditionally the largest component is taken 
to be the zz component, which leaves one parameter, usually taken to be the difference 
between the other two diagonal elements. If there are other relations the number of 
independent parameters is smaller. Such is the case for the director field. The tensor 
N(r) has the additional property that N(r) - N(r) = N(r). Therefore Nf) = dmONjD). 
(Note that Nf') = J(2/3)). For a probe molecule with no further symmetries there 
are no other relations so that, in general, 

QLM) = Qoamo + q ( d m 2  + d m - 2 ) ,  (3.5) 
where q denotes the asymmetry of the molecular tensor, which is a measure of the 
non-uniaxiality of the molecule. This reduces expression (3.4) to 

% = -1 C ( - l>mot(Q)oLm(+> - e C ( - l ) " { @ m ( Q )  + 0 2 , m ( Q ) ) D 0 2 - m ( $ ) ,  

(3.6) 
m m 

where ;1. = QoNAD) and e = qNf') are parameters that give the strength of the interac- 
tion between the probe molecule and the liquid crystal. Equation (3.6) is a generaliz- 
ation of equation (3.2) of [7] to the case of non-uniaxial molecules. We also note here 
that the nematic order parameter, S, has been absorbed into A. 

In addition to the hamiltonians and interaction energies discussed so far, there is 
also the interaction between the director field and the external magnetic field. This 
interaction is of the form B - N - B and using arguments similar to those given for the 
molecular interaction it is easy to infer that the present interaction can only depend 
on the angle between the z axes of the director frame and the laboratory frame. Also 
the interaction is strong enough to completely align the liquid crystal [4]. Although 
it is not hard to consider an arbitrary alignment in principle, this would mean the 
introduction of yet another frame of reference and merely obscure the points to be 
made in this paper. Our interest is in fluctuations of the director field around its 
equilibrim value. We will only consider the case where the equilibrium value is (000) 
for the angles (&), i.e. alignment along the magnetic field so that t+h denotes the 
angles of the fluctuating director field frame. 

The procedure followed in previous papers [7-91 is to expand 42 in the set of angles 
($), to try subsequently to express the resulting correlation functions of these angles 
in the correlation functions of the director field n, and finally to use linearized 
hydrodynamics in combination with equilibrium fluctuation theory to express the 
latter correlation functions in terms of elasticity constants and viscosities of the 
medium. This works well for small values of A, in which case a low order expansion 
suffices. To include higher order terms, however, turns out to be rather complicated 
[16]. First of all the theories for equilibrium director fluctuations indicate a gaussian 
behaviour [17] but obviously this does not mean that the distribution functions for the 
angles which are obtained in the expansions referred to are gaussians as well. This 
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138 G. van der Zwan and L. Plomp 

implies that in all cases we have to rewrite the angular correlation functions in terms 
of director correlation functions which is a formidable task [16]. Furthermore, even 
if we accomplish that task, higher order contributions cannot be neglected. There are 
two reasons for this. For a gaussian distribution the n th moment is not necessarily 
smaller than the n + 2d [18], and also in this particular situation it turns out that 
every single term in the expansion diverges [19]. One can show, however, as we will 
do in the next sections that this is not true if the perturbation series is summed first, 
or if we do not use a series expansion at  all. Finally, the value of ,I is for many cases 
not small, but indeed in many cases larger than kT [20]. In this paper we propose to 
use a faster and cleaner procedure by not using equation (3.6) as a starting point, but 
equation (3.1). 

We conclude this section by noting that we have now at least one of the probabili- 
ties of interest, the function Peq,+(Q); it is proportional to exp [ - fl%(Q, +)I where f l  
is the inverse thermal energy l / k T .  

4. The equilibrium distribution Pq (a). 
The particular form of N(r), given in $3, suggests that fluctuations of the tensor 

N(r) around its equilibrium value No = nOnO can be written as 

6N(r) = no6n(r) + 6n(r)no, (4.1) 
where, by denoting the deviations from the equilibrium value as a function of r, we 
indicate their positional dependence. The quantities 6n(r) denote deviations of n(r) 
from its equilibrium value no. The 6 is omitted in the remainder of this paper as this 
should not lead to confusion. Use of the classical (Einstein) fluctuation theory for 
director fluctuations gives a gaussian distribution for n(r) [ 101. Consistency requires 
neglecting the second order terms in equation (4.1). Therefore N(r) also has a gaussian 
distribution, which can easily be found from the distribution for n(r) [15]. 

To obtain the distribution for n(r) we start from the well-known Frank-Oseen 
expression for the free energy of a nematic, up to lowest (i.e. second) order in the 
fluctuations, 

9- = Po + jv dr {K,(divn)’ + &(no curln)’ + K3(n0 - gradn)’}, (4.2) 

where K, , K2 and K3 are the elasticity constants for splay, twist and bend deforma- 
tions, respectively. In equation (4.2) F0 is the free energy of the system in the absence 
of deformations and V is the total volume of the system, or rather the volume over 
which no is a constant. We introduce the spatial Fourier transform n(k) of the 
fluctuating field n(r) as 

1 

dr n(r) exp (ik * r) (4.3) 

and its inverse 

1 
n(r) = - n(k) exp (- ik - r). 

v k  
(4.4) 

Substitution of equation (4.4) into equation (4.2) gives, after some elementary 
manipulations, for the free energy difference A 9  = % - % 0 .  . 

1 
A% = -1 (K,/k.n(k)12 + K21no * ( k  x n(k))12 + K31n,*kn(k)12). (4.5) Zv k 
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Molecular reorientation in a nematic 139 

In a previous paper [15] we showed that, since fluctuations take place in a plane 
perpendicular to no, it is advantageous to introduce the orthonormal basis 

where 

k i  = k2 - kf ,  and k,, = no -k. (4.7) 

n(k) = n1(k)al + n 2 W 2  (4.8) 

The fluctuations can then be conveniently expressed as 

and the free energy difference A F  is given by the diagonal quadratic form [21] 

1 
= -c c (K,k: + K3kf}Ina(k)l2.  2v k u = I , 2  

(4.9) 

For every value of k the n,(k) are two independent modes of the system. The 
probability of a fluctuation is related to the exponential of the free energy difference, 
suitably normalized, and consequently the variance of the fluctuating potential of 
mean torque 42 can be calculated directly: the potential can be written as 

L 

v a= 1.2 k 
42 = no - Q . n o  - - c c ( n o  .Q-a , )n , (k ) .  (4.10) 

The first term represents the potential in the fixed director field, 420, and the second 
term the fluctuations A42 of this potential around this average value due to director 
fluctuations. Fluctuations for different values of 01 and k are uncorrelated and we may 
write 

(4.1 1) 

The remaining average can be calculated in the same manner and introduced into 
equation (4.1 1); we obtain 

(4.12) 

In appendix B equation (4.12) is evaluated for the particular choice of no indicated in 
$3: no = z, a unit vector in the z direction. The result is that the variance of the 
potential can be written as 

k Tk, 
7r2 K ( A a A W  = ~ (€?TI + Q:y>, (4.13) 

where 

2K-I = c Ka-' / (K3 ? K,) arctg /? K'). (4.14) 
a=1,2 

A somewhat simplified derivation can be given if we set K,  = K2 = K3 = K = 
(K,  + K2 + K, ) /3  (the so-called one constant approximation). As can be inferred 
from equation (4.14) the result for the variance is the same but the interpretation of 
K is different [22]. Finally we rewrite equation (4.13) in terms of the spherical 
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140 G. van der Zwan and L. Plomp 

components of Q [ I  31, and transform to the molecular coordinate frame to obtain, for 
axially symmetric molecules (e = 0, cf. equation (3.6)), 

k Tk, 
IT2 K 

(A%A%) = - 3;1* - Di, (R)Di_, (R). (4.15) 

This completes our calculation of the variance of the fluctuating potential 42. If the 
molecules are not axially symmetric, the distribution acquires additional terms 
proportional to e;1 and e2 .  Here we give explicit expressions only for molecules that 
do have axial symmetry. 

We now come to the calculation of Pe,(Q). Since 42 is a sum of independently 
fluctuating quantities, each with a gaussian distribution, cf. equation (4. lo), the 
distribution function for the 42’s must itself be a gaussian [23]. Using this observation 
it is relatively easy to calculate the equilibrium distribution for the angles a, Pcq(R). 
According to equation (2.6) it can be written as, apart from a normalization constant, 

Peq(Q) = ( e x ~ [ - P ~ l > ,  (4.16) 
where the average is over the equilibrium director fluctuations. Using what has been 
said about the gaussian nature of the fluctuating potential, it is straightforward to 
derive the equality 

It was obtained by first extracting a0, subsequently expanding the remaining expo- 
nential as a series in A%, using the gaussian property, and resumming the resulting 
series expansion [ 181. 

Upon introduction of the explicit expression for a0 and equation (4.15) we finally 
obtain for the equilibrium distribution 

(exp [ - pa]) = exp [ - @ZO] exp [if?’ (A%A@)]. (4.17) 

(4.18) 

The normalization constant Po has to be determined by integrating Pe,(Q) over all 
angles R and demanding that the result be equal to one. A remark about our 
treatment of the normalization is in order here. Expression (2.6) was taken from [7] 
and in that paper the normalized probabilities are taken forf,,($) and Pcq,@(R). In 
contrast we have integrated the unnormalized probabilities and determined the 
normalization constant at the end. The result of the two procedures is different, since 
the normalization constant in Peq,@(R) also depends on $. We show in Appendix A 
that the method we use is in fact the correct one. 

In the remainder of this section we discuss some of the properties of the equilib- 
rium distribution given in equation (4.18). First of all it is clear that as a consequence 
of the occurrence of only D f  and the product Oil Di- ,, the distribution depends solely 
on the polar angle 8. The important consequence is that, in the averages defined in 
equation (2.4), only ( D f ( Q ) )  is non-zero, which is to be expected for systems with 
the given symmetry properties. It also implies that the transition frequencies and 
quadrupolar line splittings can be found immediately, since So + (XI) is still 
diagonal [24]. As an application we investigate the molecular order parameter 
S,, = (Dio(R)) using this probability density. First we note that, since it depends 
only on the polar angle 8, the distribution can be written as 

(4.19) 
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Molecular reorientation in a nematic 141 

Table 1 .  Experimental data and calculated interaction parameter for isocyanide, toluene-d,, 
xylene-d,, and tolane-d,, in Phase V. T, = sample temperature, TN, = nematic-isotropic 
transition temperature, Szz = molecular order parameter calculated from spectral split- 
tings. The value of was calculated by solving the integral equation S,; = s dQP,,(Q) 
Dio(Q) for a = 0 (cf. equation (4.19)). For comparison the first order approximation to 
S,, using the value of found in this way is also given. Even for small values of the 
interaction parameter the difference is noticable. No change in x is found even for 
a = 0.1. Values are taken from [9] and [35]. If non-uniaxiality of the appropriate 
molecules is taken into account some of the values for become slightly lower [30]. 

Probe/measured nucleus r ,PC TN, i"C s2, x 22/15 

CH, NC/ 15 mol % 

toluene-d, / 13 mol % 
I4N 30.4 47 0.074 0.53 0.071 

'H(methy1) 

' H(para) 
41.7 51 0.139 0.97 0.129 

p-xylene-d;, / 10 mol % 

tolane-d,,/lOmol % 
'H(methy1) 31.7 56 0.262 1.77 0.236 

'H(para) 31.3 51.5 0.28 1.89 0.252 

, 

Liquid crystal molecules 0.44-0.651- 3-5 

?Order parameters for liquid crystal molecules can be determined in a variety of ways. 
Maier-Saupe theory [33] gives S = 0.44 at the transition temperature and slightly higher values 
below that. N.M.R. measurements also give values in the range indicated, and Monte Carlo 
calculations [32] give similar results. 

Table 2. Order parameters as a function of the interaction parameter 2 and the fluctuation 
parameter a. These values were calculated using equation (4.19). For values of 
below 3 the fluctuations can be neglected entirely in the equilibrium distribution. 
Sz, = <ao(Q)) .  

0.5 0.069 0.069 0.069 
1 .o 0.144 0.144 0.144 
2.0 0.297 0.297 0.296 
3.0 0.439 0.435 0.432 
5.0 0.646 0.626 0.606 
7.5 0.777 0.736 0.69 1 

where we have introduced the abbreviation 4 = cosp. The parameters a and 2 are 
given by 

k,kT 
and a = - 

3 A  
2 kT' 2n2K ' 

= -- (4.20) 

For a cut-off wavelength of 25 8, (about the length of a liquid crystal molecule), and 
a value for the elasticity constant of about 5 pN, we find a x 0.05 - 0.1. For small 
probe molecules X varies between 0.5 and 2.0, values which can be found from 
quadrupolar line splittings (see table 1). For liquid crystal molecules themselves is 
somewhat larger, equal to about 5 at most. 

The general features are also clear from this expression. If the coupling between 
probe molecule and liquid crystal is weak (A < kT) ,  and the fluctuations small (the 
magnitude of the fluctuations is measured by the parameter a) the second term in the 
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142 G .  van der Zwan and L. Plomp 

exponential can be neglected and we find the usual expression for the equilibrium 
distribution of orientations of a molecule in a fixed external field. In the limit I -+ 0 
the order parameter S,, tends to zero, as it should. If we neglect the fluctuations, i.e. 
take c? = 0 and let 1 increase, the function P,,(t) becomes more and more sharply 
peaked around 5 = 1 and consequently in the limit I -+ 00, SZL goes to one. This is 
the correct behaviour, for in that limit the liquid crystal is perfectly aligned along the 
laboratory axis, there are no fluctuations, and the probe molecule is fixed to the 
director field. The fluctuations tend to broaden the distribution a little but numerical 
calculations show that this effect only becomes of importance for rather high X values, 
X 2 3 (see table 2). This means that for the probe molecules in table 1, fluctuations 
can be neglected entirely as far as the equilibrium distribution is concerned and the 
measured order parameters can be used to calculate the interaction parameter 1 
directly. As the nematic-isotropic transition temperature TNI is approached the value 
of K decreases and consequently c? increases. At values of T - TNI z 1 K, the 
fluctuations become noticeable even for small probe molecules. Closer to the tran- 
sition temperature the theory presented here is no longer applicable. The limit of 
applicability is given by the condition [25] 

(4.21) 

which is satisfied for the values used in this paper for the various constants. The 
inequality is derived using the requirement that fluctuations should not destroy the 
nematic order. 

5. The transition probability 
In this section we derive an explicit expression for the transition probability 

P(Q,  I i2, t ) ,  which is given in principle by equation (2.7). To this end we first establish 
the equivalent of the transition probability f ( l l / , ,  ll/, t )  in terms of the director field 
modes found in the previous section. We assume that both the modes n,(k) also 
relax independently towards their equilibrium values, with relaxation times s,(k) 
given by 

where I?, is an appropriate viscosity [26]. This implies that the time dependent 
behaviour of each of the modes is given by 

n,(k, t )  = n,(k)exp[- t/z,(k)]. (5.2) 
With the assumption that the different wavevector components of the director 
field behave as independent gaussian Markov processes we can write down the 
transition probability for each component. In the previous section we found for the 
(unnormalized) equilibrium probability P(n, (k)) of finding an excitation of the c? 

mode at wavevector k: 

(5.3) 

where the variance a,(k) is given by 

(5.4) 
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The transition probability of finding a value [n,(k)] at time t ,  given that at time zero 
we have a value [n,(k)],, is with the previous assumptions, [27] 

Normalization constants (which depend on k and a) have been suppressed. The final 
expression can be normalized by demanding that the integral of P(!& I R, t )  over R be 
equal to one. 

We first concentrate on the integration of q0 in equation (2.7), since we do not 
need a model for the microscopic motion of the probe molecule in order to perform 
that calculation. We use a somewhat different approach to that in the previous 
section, but as will become clear, the results in the previous section could equally well 
have been derived using the methods given here. We rewrite the integral over all the 
functions containing q0 as 

1 J’ dqofe,(q0)Peq,@0(RO)f(qOI $ 5  t )  = exp ( - B % O )  n n 1 d[na(k)10 exp - - 
a= 1.2 k 20, (k) 

(5.6) 

This expression needs some explanation. First of all we have introduced the 
abbreviation qa for no - Q - a,. Secondly we now have to keep track of the angular 
dependence of the Qs, which we indicate by giving the qs the argument Q,. Also we 
have written the exponential of the sums over a and k as a product of exponentials. 
As will be clear from the previous sections,feq($O) is nothing but the exponential of 
the free energy of a deformation (q0) of the liquid crystal. This is the first term 
between the brackets in equation (5.6). The second probability was identified earlier 
as the exponential of the potential of mean torque of interaction between the liquid 
crystal and a probe molecule. It is separated into a fixed part, which is the prefactor 
of the integrals, and a fluctuating part, cf. equation (4.10). Finally the remaining 
conditional probability is given by equation (5 .5 ) .  Although the expression looks 
quite complicated it is just a product of gaussian integrals, one for each value of a and 
k, which can be performed in the standard way, by completing squares. The result of 
these integrations is that the right hand side of equation (5.6) reduces to 

where we also used equation (4.17) together with equation (4.12) to separate the 
Peq(!&). This shows, by the way, that the procedure followed here provides an 
alternative way of calculating Peq(Ro). 

Equation (5.7) has to be integrated with P@(RoIR, t )  to obtain the renormalized 
transition probability P(RoIR, t). We need therefore a model for the transition prob- 
ability at a fixed orientation of the director field. For this we take a strong collision 
model, which is rather simple but nevertheless shows the essential features of the 
theory presented in this paper without the necessity of going into mathematical detail, 
which for instance a rotational diffusion model would incur. The transition prob- 
ability can then be written [7] as 

P@(fZolR, t )  = &no - Q)exp(- f/zR) + Peq,$(Q>[l - ex~(-t/z,)l, (5.8) 
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1 44 G. van der Zwan and L. Plomp 

where zR is the mean time between collisions. The first term represents the probability 
of staying in the initial state R,, whereas the second term gives the chance of going 
to the other state, Q, the probability of which is given by the equilibrium distribution 
at  a fixed potential ($). We concentrate on the second term. Integration of the first 
term is trivial. 

Introduction of the second term, together with the result (5.7) into equation (2.7) 
gives, after some elementary manipulations, (we also divided both sides by Peg (a,)) 

P(Q,IQ, t )  = 6(a - Q,)exp(-t/z,) + [I - exp(-t/z,)] 

Various normalization factors were not written explicitly. As in the derivation of 
equation (5.7) from equation (5.6) we notice that these integrations can be performed 
by completing the square in the exponential. Each of the integrals cancels against 
normalization factors and what remains is the expression 

P(QolQ, t> = J(Q - %) exp(-t/z,) + [I  - exp(-t/z,)lPeq(Q) 

The remaining products are worked out in appendix B. The result of the calculation 
in the appendix is that P(Q,(Q,  t )  can be written as (taking axially symmetric 
molecules for the explicit calculations) 

P(Q,IQ, 0 = &51, - Q> exp(-t/z,) + P,V',,(Q)[l - exp(-t/z,)l 

(5.11) 

In this equation the error integral @ occurs, which is defined in equation (B 13), and 
a cut-off frequency w, was introduced, which is related to the cut-off wavevector by 

Kkt 
fl 

0, = -, (5.12) 

where y is an effective viscosity. The coefficient PG has to be determined by integrating 
the second term of equation (5.1 I )  over all angles Q, and demanding that the result 
be equal to [I  - exp(-t/s,)]. In that case the transition probability is properly 
normalized. It is clear that to lowest order in the fluctuations P,' = I ;  see also 
Appendix A. Equation (5.11) shows that the transition probability after renormaliz- 
ation has the same structure as a collisional transition probability, cf. equation (5.8), 
however, the probability of acquiring an angle R at time t ,  starting from an angle Q, 
at time zero is no longer just Peq(Q) but a much more complicated expression. 

Equations (4.18) and (5.11) are the central results of this paper. We study the 
properties and consequences of equation (5.1 1) for the rotational correlation func- 
tions in more detail in the next section. 
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6. Rotational correlation functions 
In this section we consider the properties of the transition probability derived in 

the previous section, and especially the consequences for the rotational correlation 
functions defined in $2, equation (2.5). The time Fourier transforms of these functions 
are the so-called spectral densities, which determine the relaxation behaviour of the 
nuclei in the probe molecule [2]. The spectral densities are given by 

m 

Jom(w) = (- 1)” dt exp(iwt) (D~m(Ro)Di-,(R)). (6.1) L 
It was found [8, 91 that for the lowest order theory as given by Freed [7] the 

function Jol becomes frequency dependent in the frequency range relevant for N.M.R. 
spectroscopy, i.e. for frequencies in the neighbourhood of wo (cf. equation (2.1)). In 
contrast, the lowest order theory gives functions independent of frequency for nz = 0 
and 2. Expression (5.1 1) can easily be used for higher order expansions. Although 
even for relatively high values of a the equilibrium distribution functions do not 
depend very much on the presence of the term proportional to ail2 in the exponential, 
it is nevertheless not allowed, a priori, to expand the exponential in that parameter 
since for the relevant values of 2, ax2 is itself not necessarily small enough to allow a 
successful expansion. In the exponential of the transition probability this factor is, 
however, further diminished by the error function, which has a maximum of 1, but 
is much smaller at the relevant frequencies, and by the Wigner rotation matrices, the 
product of which is also smaller than one. We assume therefore that it is allowed to 
expand the time dependent exponentials, at least for values of x < 2; this is validated 
by 

be 

the final results. 
First we consider the normalization factor Pi . Up to second order the integral can 
written as 

so that Pi is given by, using the fact that Peq(R) depends solely on p, 

This term can only give a second order contribution to .Too. 
Expansion of the exponential in equation (5.11) again gives the term in brackets 

under the integral sign of equation (6.2). Introducing these expansions into the 
expression for the transition probability and subsequent integration with Peq (52,) 
gives, for the correlation functions of interest, 

x - exp(-t/tR)l { < ~ i o ~ & ~ i - ~ > ’  - < ~ f > < ~ i l ~ i - 1 ) ( D ~ o ~ i ~ D i - , ) } ,  
(6.4) 

where we have deleted the arguments of the Ds in the equilibrium correlation fun- 
ctions: it is immaterial whether the integration variable is R or Ro. We have used 
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the fact that combinations of Ds in which the angle y does not vanish do not 
contribute to the integrals. Similarly we obtain for the other two functions 

and 

x [l - e x p ( - t / r , ) ] ( D ~ , D ~ . ~ , D i _ , ) ' .  (6.6) 
Apart from the remark that the second order term leads to a frequency dependent Joo 
we devote no further attention to equation (6.4) since it is only one of the contri- 
butions to the spin-spin relaxation time, T,, which is hard to measure accurately. We 
note here that all the equilibrium correlation functions occurring in these and the 
following expressions can be calculated using the values of 1 obtained in $4. 

The Fourier transform of the second of these correlation functions is given by 

where the integral I ,  is 

For frequencies o at which N.M.R. transitions take place, which are close to coo, 
it is found that ( 0 2 ~ ) ~  4 1 and 0 % 0.1 w,. (Collision times, found by taking high 
frequency values, are in the range of 10-2OOps and w, = 5-5  x lo's-' at a value of 
0.06Pas for the viscosity and for the values given earlier for K and k,; note that 
0 , ~ ~  < 0.1, which means that the fundamental assumption of time scale separation 
is satisfied). This implies that we can neglect the frequency dependence in the first term 
and in the last, which is referred to as the cross-term, but not in the second. A simple 
calculation shows that the cross-term can also be neglected compared to the first term. 
The remaining integral can be expressed in elementary functions but that is not our 
concern here. Its frequency dependence is the basis of the statement that director 
fluctuations lead to frequency dependent spectral densities. The value of o, is compat- 
ible with values determined by fitting the experimentally determined values of the 
function Jo,(w) [8, 9, 28, 301. 

For the probe molecules it is also found experimentally that the function JO2,  to 
which we turn now, becomes frequency dependent. It is given by 

where the integral Z,(x) is 

(6.9) 

(6.10) 
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Molecular reorientation in a nematic 147 

Table 3. Relative frequency dependence of Jol and JO2. Values are taken from [35] Liquid 
crystal, probes, measured nuclei and temperatures are the same as those in table 1. 

(AJoZlAJol) x 100% 
Probe wo/2a/MHz JOI (DF)t/PS A J02 UPS h P )  (talc)§ 

CH,NC 13.1 3.8 0.4 10 0.5 

p-xylene-d,, 30.7 16.6 2.0 12 3.7 
toluene-d, 30.7 5.7 0.6 11 1.6 

tolane-d,, 30.7 30 18 60 4.6 

t Frequency dependent part of J,, at the lowest measured frequency. Although the first 
order Freed model was used in [35], these quantities are in fact largely independent of that 
model. 

$ Estimate for the frequency dependent part of J,, . It is found by subtracting the high 
frequency value of JO2 from the values at the frequencies in the table and assuming that at the 
highest frequencies director fluctuations no longer contribute. It is likely to be slightly under- 
estimated. 

0 Equilibrium correlation functions in equations (6.7) and (6.9) were calculated with 1's 
from table 1. The integrals in equtions (6.8) and (6.10) were calculated with w, = 5.5 x 
lo8 s- ' ,  at the frequencies given in the table. The frequency dependent part of J2(2w0)/J1 (w,) 
was obtained in this way. The calculated values are an order of magnitude too low to explain 
the observed behaviour. 

For this expression the same remarks can be made as for equation (6.8). The cross- 
term can, in most cases, be neglected entirely and the first term is independent of 
frequency in the N.M.R. frequency range. The result shows that, due to the second 
order contribution, Jo2 does indeed become frequency dependent and furthermore 
explicit calculation of the integral shows that this frequency dependence has a 
logarithmic contribution [29]. 

The relative magnitude of the frequency dependent parts of Jo2 and Jol can now 
be determined. We obtain from equations (6.7) and (6.9) for their ratio 

(6. I 1) 

For values of oo/o, between 0-05 and 0.5 the ratio of the integrals 12/Zl is approxi- 
mately constant and equal to 2.3. The same is true for the ratio of equilibrium 
correlation functions in the range of relevant 2 values; between 2 = 0.5 and 2.0 it 
varies between 0.1 1 and 0.08. This shows that the ratio is generally smaller than 0.05, 
even for the highest values of 1. Some of the results are shown in table 3. The 
conclusion must be that although direct fluctuations do give rise to a frequency 
dependent Jo, , the observed frequency dependence is nevertheless too high to be 
explained by these alone. 

We defer a complete analysis of the experimental results to a subsequent paper [30]. 

7. Concluding remarks 
We have shown in this paper that it is possible to incorporate director fluctuations 

in the equilibrium distribution of molecular angles and in the angular transition 
probability to all orders. As a starting point we have used two expressions given by 
Freed, equations (2.6) and (2.7), both of which were shown only to be valid to lowest, 
i.e. first order in the fluctuations. It was noted, however, that the equations can 
be reformulated utilizing elementary probability theory, and that the resulting 
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expressions have a more general validity, cf. appendix A. The general expression, 
equation (A2), can also be used to extend the theory to temperatures closer to the 
nematic-isotropic transition temperature TNI . It was noted that fluctuations in the 
director field only become noticeable in the equilibrium distribution for strongly 
coupled probe molecules, for instance the liquid crystal molecules themselves, or close 
to the transition temperature. The liquid crystal hamiltonian 8, as given by equation 
(4.2) cannot be used at temperatures closer to the transition temperature than 
indicated in section 4. Equation (A 2 )  remains valid and adding mode coupling terms 
to F, may still lead to analytical results. 

We have only given explicit calculations for axially symmetric probe molecules. 
Most of the probes studied have, however, a marked asymmetry, i.e. the parameter 
e cannot be taken equal to zero [31]. It can be shown [30] that the general conclusions 
of this paper remain valid, i.e. to lowest order in the parameter @ there is no 
contribution to the frequency dependent part of Jom and inclusion of e gives an extra 
contribution to the frequency dependence of Jo0 and Jo2 which has the same functional 
dependence on the frequency as that already found. The conclusion reached at the end 
of the previous section is not violated. The extra contribution is too small to alter 
substantially the value of the ratio of the spectral densities. 

The general conclusion for the equilibrium probability is that director fluctuations 
influence the equilibrium distribution of angles of a not too large probe molecule only 
marginally, a few per cent at  most. Consequently the order parameter and the 
interaction parameter 2 can be determined directly using quadrupolar line splittings. 
The small difference between the unrenormalized and the renormalized order par- 
ameter even for reasonably large probe molecules was not appreciated [9, 16, 281 for 
two reasons. First of all in the literature all expressions contain only the lowest order 
contribution to S in an expansion in the interaction parameter 2, So = 22/15. For 
very small values of 2, for which Freed’s theory was originally formulated, this is 
correct, but even for values of 2 = 0.5 deviations occur and in fact the values of S 
are overestimated so that the effect of fluctuations is overestimated (fluctuations 
diminish the ordering). The second reason is that attempts to include higher order 
terms in the expansion [9] include superfluous contributions due to an erroneous 
expansion of the interaction potential of mean force, which does not take into account 
a fundamental restriction on the director fluctuations: n * no = 0. This leads to terms 
proportional to d, which for small probe molecules (2 < 1) severely overestimate the 
effect of fluctuations [32]. 

Since in this paper we are primarily interested in the effect of director fluctuations, 
and especially its consequence for the spectral densities Jom , we have left out fluctu- 
ations in the order parameter itself completely, since it is to be expected that the time 
dependence of fluctuations in the order parameter is on a faster time scale than that 
of director fluctuations [3, 71. Also, they are decoupled from director fluctuations if 
the free energy is only expanded to lowest (second) order in both the fluctuating 
director field and the fluctuating order parameter. We have absorbed the order 
parameter into the quantity A and consequently this has now also become an indepen- 
dent fluctuating quantity of which the spectrum is determined by the spectrum of the 
nematic order parameter. It is rather easy to infer what the result of these fluctuations 
is. Using a method similar to that given in this paper, the order parameter fluctutions 
renormalize the potential, cf. ASDio(Q) by a factor 

I - tAD&(i2)((AS)2),  (7.1) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
8
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Molecular reorientation in a nematic 149 

so that the effective 1 is somewhat smaller. We also note that these fluctuations are 
not related to the elastic constants at all, but to the expansion parameters in the 
Landau-de Gennes free energy [4, 51. Far from the transition temperature TN, the 
order of magnitude of ((AS)2) is about the same as that of a [33]. 

The situation with the transition probability P(!& 10, t )  is much more complicated, 
and the subject of further study. We have modified the expression given by Freed in 
such a way that also for all orders it has the correct properties and not only to lowest 
order in the director fluctuations. These properties are that the transition probability 
is still markovian and properly normalized for integration over the angles Q. The 
general principles on which it is based remain a little vague, however. It is unclear, for 
instance, for which interaction strengths the theory breaks down, or even if it does. 
Also we cannot give a simple extension of the theory closer to the transition point, 
although this would be interesting since it would allow the study of liquid crystal' 
dynamics in this regime. 

In addition to this is the uncertainty in the motional model of the probe molecule 
itself. We have used a simple strong collision model and the results for the collision 
times, which can be obtained from the frequency independent part of the spectral 
densities, are not unreasonable. A variety of other models, all of them more com- 
plicated and involving extra parameters is possible [14]. In addition we should include 
translational diffusion of the probe as well, which leads to yet another variable [7]. 
These variables are not independent. For instance rotational and translational dif- 
fusion constants are in some way related to the viscosities of the medium but 
expressions relating them are scarce and seldomly go beyond the Stokes-Einstein 
formula [34]. 

Another remark concerns the use of the one-constant approximation. We have 
shown that this approximation is justified for the elastic constants, since the difference 
between the average elastic constant and K determined from expression (4.14) is 
negligible. The following argument can be given for the use of an effective viscosity. 
It should, in principle, be possible to identify an effective viscosity in the following 
manner: the appropriate viscosities are substituted into equation (B. 10) and the 
angular integration is subsequently performed numerically, since analytical integra- 
tion does not appear feasible. Then we try to identify an qefi such that the relation 

2K-'exp - tk2K/qefl = 1 K;' (7.2) 

is valid. If such an qeR.can be found for all values of k2t the use of an effective viscosity 
is justified; at present we can only hope this is the case and that the value found is close 
to the usual viscosities. 

Yet another parameter in the theory is the cut-off wavevector k,, the presence of 
which is the result of the application of a macroscopic theory at a microscopic level. 
Of course, there are ways of ridding oneself of this parameter but at the price of 
having to specify the behaviour of the liquid crystal at a local scale, or by boundary 
conditions. Introduction of the cut-off frequency in the time dependent integrals is a 
more complicated matter. We stated (in appendix B) that this introduction is necess- 
ary to insure convergence of the integrals at time zero, but in fact this is an improper 
limit in view of the fact that for such small times it is not the fluctuating director field 
but the collisional motion of the molecule that should determine its behaviour. On the 
other hand there is a physical argument, namely that director field modes cannot have 
arbitrarily short wavelengths. Also, if the frequency dependence is attributed to 

I 

dtexp - tk2 (K,/q.)[l + (K3/K,  - I)<'] 
01 0 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
8
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



150 G. van der Zwan and L. Plomp 

director fluctuations, the observed functional frequency dependence of the spectral 
densities can only be explained if a cut-off frequency is introduced, the value of which 
also gives reasonable results for the cut-off wavelength [8, 9, 28, 301. 

We conclude therefore by stating that the theory presented in this paper, which is 
an extension of the ideas proposed by Freed can only be said to be consistent, in the 
sense that if reasonable values of all parameters are taken, a frequency dependence 
of both .To, and JO2 is obtained. The magnitude of the frequency dependence of Jo2 
appears, however, to be off by an order of magnitude compared to experimental 
results; the functional dependence of the parameters, as given in equation (6.1 1) and 
subsequent equations, seems hardly to allow an improvement. It must be admitted 
that the magnitude of all effects considered depends rather crucially on the magnitude 
of the cut-off wavelength 1,. An increase of this parameter by a factor 3 [32] increases 
the value of w, by a factor 9 and the fluctuation parameter a decreases by a factor 3. 
This would bring 1, in a more realistic range, but as a consequence all effects of 
director fluctuations on the N.M.R. spectra and relaxation behaviour disappears. 

The authors would like to thank J. Bulthuis for critical comments regarding our 
treatment of asymmetric molecules. 

Appendix A 
In this Appendix we comment on the procedures followed to obtain the renor- 

malized probabilities. The starting point is the probability of a configuration of the 
liquid crystal together with the probe molecule. The free energy of deformation F($) 
of the liquid crystal can be considered as that from the hamiltonian of that system, 
and the energy of interaction @(Q $), the hamiltonian of interaction between the 
probe and liquid crystal environment. The canonical equilibrium probability of a 
liquid crsytal plus probe configuration is then 

(A 1) Pe,(Q, $) = 
exp - flL9 + @I 

dQd$exp - fl[F + %] 

and from this Pe,(Q) can be simply found by integrating Pe,(Q, $) over the angles $: 

(A 2) 
Peq(n) = j d +  jda d+exp - P [ 9  + 421 * 

exp - fl[F + @] 

This is exactly the procedure followed in this paper. 

ive probabilities used are (cf. equation (2.14~)  of [7]) 
The method proposed by Freed [7] is different in the following sense. The respect- 

and 
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Clearly 

is not necessarily equal to the integral in equation (A 2). We maintain that (A 2) is the 
correct expression. It can be shown, however, by a rather tedious calculation, that to 
lowest order both expressions yield the same results. We are interested in an expansion 
up to arbitrary order and consequently make use of equation (A 12), which shows that 
indeed we can first integrate the unnormalized probability exp - j[F + %] over the 
angles + and finally fix the normalization constant by integration over R. A similar 
situation occurs in the time dependent problem. Again it should be noted that for the 
probabilities &,,@ (a) occurring in expression (2.7) and the collisional probability 
function (5.8) the unnormalized probabilities exp - have to be used in contrast 
to the equations used by Freed [7]. This can be seen most clearly in the limit t -+ co, 
when equation (2.7) has to reduce to Peq(C2)Peq(!2,,), or, to the square of equation 
(A2). The normalization constant can then be fixed at the end by demanding that 

jdRP(%lR, t )  = 1. 

In view of the symmetry between G and !2,, in equation (5.1 1) the markovian property 

is then also automatically satisfied by P(RoIR, t ) .  
We note finally that it is allowed to use the normalized probabilityf,,(+) as given 

in equation (A 3). The normalization constant for this function really is a constant and 
can be taken out of the integrals entirely. This was frequently used in $5, whenever 
we needed cancellation of gaussian integrals, in order to keep the expressions 
tractable. 

Appendix B 
In this Appendix we evaluate equation (4.12) and derive equations (4.13) and 

(4.14), and the corresponding expressions for the time dependent problem of section 
5. The evaluation takes place in two steps. First we replace the sum over k by an 
integral: 

This is allowed for a large enough volume V. Then we can calculate the resulting 
integrals, which we write as 

For the particular choice of no given in $4, the vectors a, and a, are given by 
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There are three different integrals to be considered: those containing respectively k,rky,  
k: and k: in the integrand. The first is zero, since the integration over the azimuthal 
angle makes it vanish; the other two are equal: 

d4cos2 4 = d4sin24 = 71. (B4) 

Next we come to the integration over the polar angle 6. The one remaining integral 
can be written as 

lo’” S,’” 1,’” d4cos4s in4  = 0, 

1 = J( Ka ) arctg J( K3 K, - Ku ) .  (B5) 
K, + (K3 - K,)cos26 K, K3 - Ka 

j-:‘ dcos 6 

Finally we have to consider the integration over the length of the vector k. This 
integral is given by 

joke dk = k, ,  

where we had to introduce a cut-off wavevector, k,,  to assure convergence of this 
integral. The rationale for this cut-off is the non-applicability of the macroscopic 
theory of the director field for small wavelengths. Taking everything together, we find 
for the tensor T, 

The second step in the calculation of (A@A@) is to perform the sum over CI which 
can now be written as 

Introduction of equation (B 7) into equation (B 8) gives equations (4.13) and (4.14). 
For the time dependent problem cf. equation (5.10) we have a similar integral to 

calculate; i.e. after replacing the products of exponentials by an exponential of the 
sum over k and a, and subsequently the sum of k by an integral, using equation (€3 I ) ,  
we find the tensor 

to evaluate. As in the foregoing derivation, we can write Ti in the form of equation 
(B7), but now with a time dependent prefactor T i ( t )  which is given by 

A cut-off wavevector, k,,  was introduced to assure convergence at t = 0. In the limit 
t --+ 0 equation (B 10) reduces to equation (B 5) ,  as it should. Further analytical 
progress is only possible in the one-constant approximation, where all the Ks are 
taken equal as well as q I  = qz = q. Then equation (B 10) can be written as 

2nk, @((w, t ) ’”)  
Tj(t) = - 

K (w,t)’I2 ’ 
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where the cut-off frequency, w,, is defined by 

Kkz 
rl 

0, = -. 

The error integral @(z)  is given by 

@(z) = dxexp(-x2).  (B 13) s,; 
Finally we perform the sum over the as to  obtain for the product of exponentials in 
equation (5.10): 

Introduction of the spherical components of the Qs [13] and subsequent transform- 
ation to  the molecular coordinate frame gives equation (5.1 1). 
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